460-2 International Economics

Problem Set 1

1. (Aguiar and Gopinath, 2007) Consider a small open economy receiving the stochastic endowment y_{t}, which is made of two components, a permanent component x_{t} and a temporary component z_{t} :

$$
y_{t}=x_{t}+z_{t}
$$

where x_{t} follows the process

$$
\Delta x_{t}=\rho_{x} \Delta x_{t-1}+\varepsilon_{t}
$$

z_{t} follows the process

$$
z_{t}=\rho_{z} z_{t-1}+\eta_{t}
$$

and ε_{t} and η_{t} are i.i.d. shocks. The consumers have preferences

$$
E_{0} \sum \beta^{t} u\left(c_{t}\right)
$$

with a quadratic utility function $u\left(c_{t}\right)=c_{t}-(1 / 2) c_{t}^{2}$. Consumer observe x_{t} and z_{t} when they are realized. The country has access to a one period, risk free bond, at the world interest rate r, which satisfies $\beta(1+r)=1$.
(i) Setup the problem of the representative consumer in recursive form, using the appropriate state space. Derive the optimality conditions for c_{t}.
(ii) Let a_{t-1} denote the country's current holdings of international bonds and conjecture that optimal consumption takes the linear form

$$
c_{t}=b_{0}+b_{1} x_{t}+b_{2} x_{t-1}+b_{3} z_{t}+b_{4} a_{t-1} .
$$

Derive the equilibrium values of the parameters b.
(iii) Show that consumption growth Δc_{t} is a stationary time series.
(iv) Derive the current account for the country as a moving average of past shocks. Show that $C A_{t}$ is a stationary time series.
(v) Fix $\beta=0.96$. Vary the value of $\sigma_{\varepsilon}^{2} / \sigma_{\eta}^{2}$ and plot the following two statistics

$$
\begin{aligned}
& \operatorname{Corr}\left[C A_{t}, \Delta y_{t}\right] \\
& \operatorname{Var}\left[\Delta c_{t}\right] / \operatorname{Var}\left[\Delta y_{t}\right]
\end{aligned}
$$

Compare with Figure 4 in Aguiar and Gopinath (2007). Discuss.
2. (Kraay and Ventura, 2000) Consider an economy where consumers can invest in two assets: home capital and foreign capital. Total investment in the two assets is denoted by k_{t}, k_{t}^{*}. Home capital and foreign capital are risky with random linear returns A_{t} and A_{t}^{*}.

Consumers preferences are represented by

$$
E\left[\sum_{t=0}^{\infty} \beta^{t} \ln c_{t}\right]
$$

and the flow budget constraint is

$$
k_{t+1}+k_{t+1}^{*}+c_{t}=A_{t} k_{t}+A_{t}^{*} k_{t}^{*}
$$

(Relative to what we saw in class there are no bonds here).
Assume that A_{t} and A_{t}^{*} follow Markov processes:

$$
\begin{aligned}
A_{t} & =\left(A_{t-1}\right)^{\rho} \epsilon_{t} \\
A_{t}^{*} & =\left(A_{t-1}^{*}\right)^{\rho} \epsilon_{t}^{*}
\end{aligned}
$$

where ϵ_{t} and ϵ_{t}^{*} are i.i.d. \log normal disturbances with mean 1 . The variances of ϵ_{t} and ϵ_{t}^{*} are equal to σ^{2}.

Define wealth (with dividends) as

$$
w_{t}=A_{t} k_{t}+A_{t}^{*} k_{t}^{*}
$$

(i) Show that the optimal consumption rule is linear and equal to

$$
c_{t}=(1-\beta) w_{t}
$$

(ii) Show that the optimal portfolio share $\theta_{t} \equiv k_{t+1} /\left(k_{t+1}+k_{t+1}^{*}\right)$ is time varying and is given by the function

$$
\theta_{t}=h\left(a_{t}\right)
$$

where $a_{t} \equiv A_{t} / A_{t}^{*}$.
(iii) Show that $h($.$) is a nondecreasing function.$
(iv) Use a linear approximation for $u^{\prime}(c)$ to derive

$$
h(a) \approx \frac{a^{\rho}-1+\sigma^{2}}{\left(a^{\rho}+1\right) \sigma^{2}-\left(a^{\rho}-1\right)^{2}}
$$

you might also derive

$$
h(a) \approx \frac{1}{2}+\frac{a^{\rho}-1}{2 \sigma^{2}}
$$

(it depends wether you linearize only w.r.t. ϵ and ϵ^{*}, or also w.r.t. a.)
Use these relations to argue that the derivative $h^{\prime}(1)$ is larger for smaller values of σ^{2} and for larger values of ρ. Give an economic interpretation.
(v) Suppose the outside world does not invest in the country. Show that the current account can be written as

$$
C A_{t}=\left(1-\theta_{t}\right)\left(w_{t}-c_{t}\right)-\left(1-\theta_{t-1}\right)\left(w_{t-1}-c_{t-1}\right)
$$

Derive the usual current account identity for this economy.
(vi) Show that the effect of a productivity shock on $C A_{t}$ can be decomposed in two components, one due to Δw_{t} one due to $\Delta \theta_{t}$. Suppose we are in a situation where $A_{t-1}=A_{t-1}^{*}=1$. Show that if h^{\prime} is small the first component dominates and a domestic productivity shock has a positive effect on the current account surplus, if h^{\prime} is large the second component dominates and a productivity shock has a negative effect on the current account surplus. Use (iii) and (iv) to interpret this result.
3. (Rogoff, 1992)

Consider a small open economy with a representative consumer with preferences

$$
\mathrm{E} \sum \beta^{t} U\left(c_{t}\right)
$$

where $U(c)=c^{1-\gamma} /(1-\gamma)$ and where consumption is the following aggregate of tradable and non-tradable goods

$$
c_{t}=\left(c_{t}^{T}\right)^{\alpha}\left(c_{t}^{N}\right)^{1-\alpha}
$$

Production functions of tradables and non-tradables are Cobb-Douglas:

$$
\begin{aligned}
y_{t}^{T} & =A_{t}^{T}\left(n_{t}^{T}\right)^{\alpha} \\
y_{t}^{N} & =A_{t}^{N}\left(n_{t}^{N}\right)^{\alpha}
\end{aligned}
$$

The consumer can only trade a one-period non-state-contingent bond. There is no capital. The world interest rate is fixed at r. Consumers have a unit supply of labor which is fully employed in one of the two sectors:

$$
n_{t}^{T}+n_{t}^{N}=1
$$

(i) Write the budget constraint and derive the optimality conditions for the consumer and for the firms producing tradables and non-tradables. Use tradables as the numeraire.
(ii) Using consumer optimality derive a relation between the ratio c_{t}^{T} / c_{t}^{N} and the relative price of non-tradables p_{t}.
(iii) Using firms' optimality and labor market clearing derive a relation between n_{t}^{T}, the relative price of non-tradables and the productivity levels A_{t}^{T} and A_{t}^{N}.
(iv) Combine (ii) and (iii), the production function for non-tradables and market clearing in non-tradables to find a relation that must hold each period between c_{t}^{T} and n_{t}^{T}.

Suppose the country has constant productivities $A_{t}^{T}=A_{t}^{N}=\bar{A}$. At date 0 the country experiences a one-time, unexpected, positive transitory shock to the productivity of tradables so

$$
A_{t}^{T}=\bar{A}+\rho^{t} \epsilon
$$

with $\epsilon>0$ and $\rho \in(0,1)$.
(v) Assume $\gamma=1$. What is the effect of the productivity shock on consumption of tradables c_{t}^{T} at dates $0,1,2, \ldots$?
(vi) What is the effect on the production and consumption of non-tradables (hint: use your result in part (iv))?
(vii) What is the effect on the relative price p_{t} at dates $0,1,2, \ldots$? Does it depend on ρ ? Does this support Rogoff's claim that "barring shocks to the supply of non-traded goods available for private consumption, the log real exchange rate would follow a random walk, regardless of the serial correlation properties of the shocks to traded goods productivity (p. 12 of NBER WP 4119).

